NOTABLE LI-ION ALTERNATIVES

An at-a-glance look at up and coming zero-emission technologies

HYDROGEN FUEL CELLS

DEVELOPMENT STAGE

For sale today in CA as test market; still being refined for broader distribution

ENVIRONMENTAL IMPACT

Excellent provided mass scale production can be solved

INFRASTRUCTURE NEEDS

High – requires new fuel distribution and delivery mechanisms

RECHARGING SPEED

High – <u>five minutes</u> adds 400-mile (650 km) range

PASSENGER SAFETY

Safe or safer than ICE. Unlike gasoline, hydrogen quickly dissipates if tank is punctured

COST

Low if hydrogen can be obtained from sea water

PROGNOSIS

5-10 years before widespread adoption. Limited to urban and high traffic corridors

SOLAR PANELS

DEVELOPMENT STAGE

First mass-produced solar-powered vehicle rolling off assembly line this year: the Aptera

ENVIRONMENTAL IMPACT

3-25 times less impact than when generating same amount of energy from fossil fuels. Still requires a battery

INFRASTRUCTURE NEEDS

Low, although will soon require more recycling plants and/ or better overall recycling for panels

RECHARGING **SPEED**

Requires ideal weather conditions but battery or supercapacitor can even out periods of varying sunlight

PASSENGER SAFETY

Too early to tell. Vehicles with low drag and low weight may not be as crashworthy

COST

Coming down, starting with \$25,900 for the Aptera

PROGNOSIS

Great potential especially if Musk turns his interest in solar panels from buildings to solar-powered cars

GRAPHENE SUPERCAPACITORS

DEVELOPMENT

STAGE

Some commercial applications exist but not yet capable to primarily power a vehicle

ENVIRONMENTAL IMPACT

Poor given current manufacturing techniques; however, material is a carbonsink with excellent environmental potential

INFRASTRUCTURE

NEEDS

High – requires completely new charging infrastructure

RECHARGING SPEED

Very high – able to <u>fully charge</u> within seconds

PASSENGER SAFETY

Excellent - material is non-toxic and non-reactive

COST

Low – carbon is cheap and readily available, but manufacturing techniques need to catch up

PROGNOSIS

Limited to a battery companion technology for foreseeable future since supercapacitors have difficulty maintaining charge

MICROBIAL BATTERIES

DEVELOPMENT STAGE

Very early. Proof of concept has been completed but not in commercial use

ENVIRONMENTAL

biodegradable), and

are self-renewing

IMPACT Excellent - bacteria are organic, create acetate (which is

INFRASTRUCTURE NEEDS

Low, assuming

batteries are paired with solar panels their most likely use case

RECHARGING **SPEED**

Slow – batteries currently require 16 hours to charge for 8 hours of use

PASSENGER SAFETY

Organic components:

are much safer than

Li-ion batteries

COST

Low since the primary component bacteria – are

self-replicating

PROGNOSIS

10 years plus. Although work continues, hurdles in efficiency and cycles need to be overcome

COBALT-FREE LITHIUM BATTERIES

DEVELOPMENT STAGE

Cathodes using other metals are in various stages of R&D. Expect to see some in: production by 2023

IMPACT Replacement

chemistries don't have all the concerns of cobalt, but many don't eliminate mining problems either

NEEDS Pricing equivalent

to that of current EV infrastructure

RECHARGING **SPEED**

With careful

formulation, charging rate <u>can be same</u> as existing cobalt-based: Li-ion batteries

PASSENGER SAFETY

Issues with thermal regulation and fires need to be solved as cobalt does better job : of shedding heat

COST Much better than

standard Li-ion – for

example manganese

is <u>18 times cheaper</u>

than cobalt

PROGNOSIS

Has promise given Musk's ambitions plans to ditch cobalt and given several other OEMs are pursuing cobalt-free battery designs

SOLID-STATE BATTERIES

DEVELOPMENT STAGE In production for small devices like <u>RFID tags</u>,

Many electrolyte

materials are under

investigation.

Chemistry of

"winner"

will determine

final impact

INFRASTRUCTURE NEEDS

With longer ranges

possible, fewer mid-

trip EV charging

stations are required

SPEED Potential to charge much faster

than Li-ion

Excellent - non-toxic solvents have low

SAFETY

flammability, are non-volatile, and have thermal stability

COST

Expensive now but

expected to be lower.

Only materials less

expensive than

Li-ion will survive

market pressures

PROGNOSIS

pacemakers, and

smart watches; R&D stage for cars

Initial commercialization expected by 2024 but not likely widespread until 2030

Visit the Third Law ZEV blog for more detailed information on each of these technologies.

© 2021 Third law. All rights reserved. Terms of use: portions of this work can be repurposed for commercial or non-commercial use,